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Abstract: The uptake of electric vehicles (EVs) may pose a challenge to power distribution net-
works (PDNs). While smart charging can be deployed to relieve stress on the grid, user-centric
smart charging strategies could also exacerbate peak power demand due to synchronization when
optimizing charging with regard to different objectives, such as charging costs. In this paper, we
assess the charging demand emerging from a large fleet of EVs, with models for the decision to charge
and distribution of the steady-state state-of-charge (SoC). These are applied to the municipality of
Frederiksberg, Denmark, using data from the Danish national travel survey. Home and workplace
charging are mapped to the urban 10 kV medium voltage PDN of Frederiksberg considering different
charging behaviors and degrees of synchronization. Results indicate that the likelihood of severe
congestion in the power distribution network is low and that it can be attributed to rare scenarios
in which high synchronization is observed, particularly when maintaining the normal steady-state
demand. Despite the low likelihood, preventive measures should be devised to mitigate such scenarios,
especially if additional high-power consumers are connected.

Keywords: electric vehicles; charging synchronization; grid impact; medium voltage; urban power
distribution network

1. Introduction

Electrification of road transport, particularly personal vehicle utilization, has been
identified as an important means to address the global challenge of reducing carbon
emissions [1]. The growth of the EV market share has stimulated extensive research in the
analysis of the impact of uncontrolled charging on both low [2,3] and medium voltage [4,5]
PDNs. Works include the impact analysis for different grid topologies, e.g., rural, suburban
or urban PDNs [6,7], for different countries [2,8–10] or commonly used test systems [11–13]
due to a lack of data. The use of smart charging to mitigate this risk on the PDN has also
been largely covered in the literature [14,15]. While several definitions of smart charging
exist, optimally smart charging should consider both the power systems’ and vehicle
users’ benefits [16].

However, recent studies also show that the coincidence factor (CF) of uncontrolled
charging with increasing fleet size and charging power is expected to be rather low, typically
less than 25% [17,18], and thus might not pose the primary risk of overloading PDNs. The
CF is defined as the ratio of the simultaneous maximum demand of a group of consumers
(EV demand for the purpose of this work) to the sum of their individual maximum demands
within a specified period. In contrast, little attention has been dedicated to the analysis of
the potential negative impacts of a large-scale simultaneous start of charging stemming from
different optimization strategies or the unforeseen use of the system, such as user-centric
smart charging strategies that do not consider network constraints and the large-scale
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response of EV users to distribution network tariffs [11,19,20] or the malicious manipulation
of charging control resulting from cyberattacks [21,22].

The first encompasses the risks posed by the synchronization of charging to external
signals, such as electricity spot price and carbon emission fluctuations, or in its simplest
form, to distribution network tariff variations. While several Danish companies offer
such smart charging services [23,24], the existing literature [11,19] indicates that cost
minimization could be a driving force for undesirable synchronization effects in home
charging. Furthermore, network tariffs aim at incentivizing customers to shift demand
away from peak load times. One example is the recently announced new tariff system of the
Danish distribution system operator (DSO) Radius [25], where prices for households during
peak load periods in winter will be roughly nine times higher than during low load periods.
While tariffs can be a means to relieve stress on the grid, several pilot projects related to
network tariffs also point towards the potential adverse effects of high rebound effects
causing secondary peaks [26–29] due to undesirable synchronization at the intersection of
two pricing periods.

The interplay of network tariffs and electricity price-based smart charging schemes
(based on 24 h forecasts) could increase the CF, stemming from EV users deciding to charge
on the given day. In addition, price-based smart charging could potentially increase the
CF even further when considering multi-day forecasts in the optimization, thus rising the
potential for simultaneous charging of a large fleet of EVs on the same day at the same time.
Despite the potential for large impacts, little attention has been dedicated to quantifying
and analyzing such impact on PDNs [14,20,30,31].

We address this knowledge gap in the paper by analyzing the potential impact of
different degrees of charging simultaneity by comparing several EV charging scenarios.
Recent literature credits home and workplace charging with the greatest potential for
EV flexibility due to long idle times [32]. Therefore, we focus our analysis on these two
charging locations where smart charging might be pursued most frequently, with the risk of
adverse synchronization effects if PDN constraints are not taken into account. Furthermore,
this paper focuses its analysis on the municipality of Frederiksberg, the inner part of the
metropolitan area of the city of Copenhagen (Denmark). Due to its high population density
and heterogeneous combination of charging demand, it is a good case study for assessing
the impact of EV adoption on the power grid in the urban context. This municipality is
currently part of a comprehensive project, FUSE [33], dedicated to analyzing the impacts of
the electrification of private road transport, both from the perspective of transport demand
and from the power grid supply standpoint. By combining real data from user behavior,
baseline power consumption in the PDN and its topology, we offer a practical approach
to analyze power grid utilization in real-world scenarios. We focus the analysis on the
medium voltage PDN as part of a two-step approach. First, we access the boundaries
of the impact on the medium voltage PDN. Second, we proceed with the analysis of the
impact on the low voltage grid in future work. This approach addresses the lack of real-
world case studies that simultaneously consider the transportation and power distribution
perspectives [34] and aims at assisting DSOs to understand the potential impact of high
charging synchronization in urban areas.

The main contributions of the paper are:

• Providing a large-scale case study based on real data for modelling the PDN and
EV demand,

• Making use of novel steady-state SoC and decision-to-charge models to be able to
simulate and analyze different charging patterns,

• Providing a novel and straightforward charging allocation methodology to map EV
charging events to the PDN,

• Addressing the lack of studies devoted to analyzing the grid impact of charging
synchronization which might become more prominent in the future when EV users
will follow the same user-centric smart charging objective.
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The subsequent parts of this paper are organized as follows: Section 2 provides an
overview of the methodology introduced in this paper; Sections 3 and 4 present and discuss
the key findings; finally, conclusions are given in Section 5.

2. Methodology

An overview of the methodology of this paper is illustrated in Figure 1 and consists
of five steps, to be discussed in the following. The different steps are highlighted by large
rectangles ranging from light to dark green.

Step 5: 
Cost calculation

Step 2: EV charging modelling

Step 1: PDN modelling

Danish national 
travel survey

(1) Home
(2) Work

Voltage, 
Transformer & 
cable loading

Reinforcement 
costs

Step 3: Allocation of charging events to PDN

Hourly power 
consumption

Data 
processing

Parking conditions 
& arrival purpose 
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Power
flow

Charging events allocation

Step 4: Simulation
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analysis

Charging location
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Figure 1. Methodology of the paper to determine the impact of different charging strategies on the
power distribution network of Frederiksberg (FRB). While dark-gray-shaded rhomboids depict the
input data, gray-shaded shapes represent the external parameter. The light-gray-shaded hexagon
represents the external models [35] used in this work. White-shaded rectangles illustrate results
obtained in each step of the process.

2.1. Power Distribution Network Modelling

The modelling software to analyze the PDN in Frederiksberg makes use of the Python
package Pandapower. This package allows for a straightforward representation of the
10 kV PDN of Frederiksberg to simulate the power flow in the respective infrastructure.
For the purpose of this paper, we focus the analysis on the 10/0.4 kV transformers and
the respective feeding underground cables. The power grid network topology is defined
based on data collected from the DSO for this area, Radius, which provided the location
and characteristics of its transformers and respective cables. In normal operation, the PDN
of Frederiksberg is divided into three independent networks labelled FRBi with i = {1, 2, 3}.
Each PDN has its own main station 30/10 kV coupled to multiple feeders connecting the
respective transformers. Additional connections between the PDNs exist, which can be
deployed as tie-lines to connect the transformers in contingency scenarios. In this work,
we only consider normal operation in which the three PDNs are operated independently.
A brief description of the PDNs’ main characteristics is given in Table 1, and the layout is
illustrated in Figure 2.
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Table 1. Summary of the power distribution network infrastructure in Frederiksberg. For each FRBi,
there are Ni

tr transformers connected to Ni
c cables covering a total length Li

c.

FRBi Ni
tr Ni

c Li
c (km)

1 152 222 93.4
2 98 157 60.0
3 34 61 19.9 Zones for private home and workplace chargersModelled electrical distribution network topology at Frederiksberg

Figure 2. Visualization of the urban power distribution network of Frederiksberg. The grid topology
is shown on the footprint of the municipality, with gray lines indicating roads and walking paths and
buildings represented in light blue. The 10/0.4 kV transformers i = {1, 2, 3} are illustrated by red,
blue, and black solid dots. Medium voltage underground cables for all PDNs are shown in green.

2.2. EV Charging Modelling

The evaluation of the daily EV demand is based on two pillars. The first is travel records
(private car trips only) from the Danish national travel survey in the years 2006–2019 [36].
The second is the models for the decision to charge and steady-state SoC distributions
introduced in [35], where the decision to charge is represented by a simple parametric
model that takes as inputs only the SoC level and relative daily range, i.e., the ratio of
daily-driven distance to the vehicle’s range. Moreover, this model can also be used to
infer an initial steady-state distribution of SoC levels that is consistent with real-world
utilization, thus preventing either under or overcharging due to poor representation of the
initial SoC levels.

From the travel survey, we collected all travel records for private car utilization that
visited Frederiksberg at least once, which defined the donor pool of representative travel
records. Since the travel survey samples a small fraction of the population yearly, each
record includes a calibration factor λ that ensures a representative picture of the population
in each year. We used this calibration factor to generate an expanded pool of travel records,
such that each donor record spawns bλc records in the expanded pool. In this process, we
utilized origin–destination traffic matrices to introduce random variation to the location of
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each activity in the expanded pool of records, while still preserving the traffic patterns. By
making use of the information available, we characterized the records by home residency
and workplace municipalities, the parking conditions and the type of day. The travel
survey does not indicate the specific day for each record, rather it identifies the respective
type of day. Normal weekdays, defined as Monday to Thursday where the next day is not
a holiday or special day, comprise the bulk of the travel records, approximately 57.4% of all
records. The next largest subset of records concerns Fridays or weekdays prior to holidays,
accounting for approximately 14.6%. The remaining groups contain even smaller shares
of the donor pool, making these susceptible to non-representative variations from outlier
records. Therefore, we restricted our analysis to travel records from the largest group.

In addition, we leveraged the data on parking conditions at home and work to identify
the potential access to home and workplace charging, which we used to categorize the
records into non-overlapping subgroups, as depicted in Figure 3. Given the scarcity of
records for EVs in the travel survey, we used records from vehicles with conventional
drive-trains. For each record, we attributed a battery capacity based on a review of new EV
specifications, assuming a fleet with a mean capacity of 68 kWh with a standard deviation
of 18 kWh and set the mean rate of conversion for all records at η = 0.2 kWh/km.

The models introduced in [35] were then used to determine the required energy to
meet travel requirements δε, the probability of charging at a given day pd, as well as the
mean interval between charging events dp.

2.2.1. Classification of Travel Records

The distribution of the charging events was determined by a hierarchical filtering pro-
cess, based on the parking conditions at home and work, as well as the travel diaries details,
as depicted in Figure 3. To begin with, we segregated the records according to the residency
municipality to identify the share of charging events from residents and the demand emerg-
ing from visitors. The visitors comprise any person that at any point in their travel record
drives into the selected municipality. Then, we started the hierarchical filtering process.
First, we assessed the parking conditions at home as indicated in the travel survey [36]. For
those with reliable access to parking at their premises (i.e., in carport/garage or in the front
yard/driveway) or on/next to the property (i.e., reserved, always or normally space park-
ing), we inferred that home charging will be available to such drivers. If the travel records
indicate that the vehicle returns home on that day, we attributed the demand from this
record to home charging. Second, remaining records were then screened for good parking
conditions at work. Those include a permanent parking space provided by the employer,
as well as free parking, defined as always or normally available. By the same token, we
attributed workplace charging if the travel records indicated a visit to the workplace on that
day. Since the workplace municipality can be different from the residency, we accounted for
the contribution inside and outside Frederiksberg. The remaining demand was assigned to
charging using the public infrastructure and was exempt from our impact analysis within
this work. It is worth noting that we are likely overestimating the penetration of home and
workplace charging by assuming that everyone who has conditions to have a charger will
install one. Hence, the results shown in this paper should be interpreted as upper bounds
to the share of charging demand met at home and the workplace.

2.2.2. Charging Scenarios and Energy Demand

Even though the market share of EVs in Denmark remains low so far [37], for the
purpose of this paper, we considered an ambitious scenario of full electrification of the
private passenger car fleet of the year 2020, i.e., 24,252 cars [38]. Assuming a homogeneous
distribution of EVs at the national level and present-day traffic patterns, we should expect
in this scenario that the total number of EVs transiting in Frederiksberg daily reaches
Nt = Nr + Nv = 59,070, where Nr = 24,252 and Nv = 34,818 are the number of EVs from
residents and visitors, respectively. To ensure a representative load profile, we randomly
sampled travel records for each day in the power flow simulation, collecting Nr residents
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and Nv visitors. We collected travel records for 40 weekdays of peak loading to be discussed
in more detail in Section 2.4.

Yes
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Figure 3. Representation of the segmentation of travel records according to residency and workplace
municipality, as well as the parking conditions at the respective locations.

Based on this set of records, we ran five base scenarios Si for EV charging to analyze
the impact on the PDN, namely:

• (S1) uncontrolled non-daily charging,
• (S2) uncontrolled daily charging,
• (S3) time-synchronized non-daily charging,
• (S4) time-synchronized daily charging, and
• (S5) time-and day-synchronized non-daily charging.

The first and second scenarios concern unconstrained charging, in which no man-
agement is imposed on the charging process and the EVs charge upon arrival. S1 sets a
baseline for the charging demand, in which drivers charge δε with a mean interval of dp
days, according to the decision model and steady-state demand introduced in [35]. In this
scenario, only a subset of EVs charge on a given day, as determined by the aforementioned
decision model. It is worth noting that most EVs will charge on a non-daily basis, yet
a small portion could require daily charging. Hence, we refer to the charging pattern
determined by the decision model as non-daily charging behavior. In contrast, S2 probes
the impact of satisfying the energy demand on a daily basis, i.e., charging δε/dp every day.
In this scenario, we forced all EVs to charge their daily demand independent of the decision
model. The impact of high charging simultaneity was addressed in the remaining scenarios.
Scenarios S3 and S4 follow the charging patterns of scenarios S1 and S2, respectively, but the
charging process is controlled and only allowed to start, if altogether possible, after the
coordination signal time. Both scenarios illustrate intraday synchronization (labelled as T.S.
for time-synchronization), where the charging starts simultaneously for the EVs that will
charge on the given day. In brief, scenarios S3 and S4 concern different levels of demand. In
S3, the demand is governed by the steady-state model, which leads to a fraction of the total
EVs charging each day to cover their multi-day energy demand. In contrast, S4 concerns a
scenario where each EV charges daily the amount required to satisfy its daily demand. For
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large fleets, the aggregated energy demand in both cases should be similar, but distributed
over a much larger number of vehicles in S4 than in S3. Conversely, the duration of charge
events is considerably smaller in S4 than in S3. Hence, S4 represents the potential peak
power demand. Finally, S5 simulates an extreme demand case as a combination of S3 and
S4. This scenario should be understood as a worst-case scenario which explores peak power
and peak energy demand in a single day. In this scenario, all EVs charge their steady-state
demand δε as in S3 (i.e., the demand accumulated since the last charge) on the same day as
in S4, thus representing the extreme case of synchronizing charging on the same day at the
same time (labelled as T.D.S. for time- and day-synchronization). For large fleets of EVs
driving different distances every day, such a scenario should be extremely unlikely, as it
would require a commensurate alignment of the steady-state charging cycle of all vehicles.

In scenarios S1 and S3, the number of charging events is determined by the probability
pd of each EV charging on a given day, as defined in [35]. For the purpose of this paper, we
drew a random number from a uniform distribution in the interval r ∈ [0, 1] and defined
the acceptance criteria for the decision to charge as r ≤ pd. Consequently, the number of
charging events in said scenarios was stochastic in nature and smaller than the number of
events in the remaining scenarios. Conversely, in the remaining scenarios, we observed as
many charging events as records matching the filtering criteria depicted in Figure 3.

A summary of the maximum number of home NH and workplace NW charging events
and the respective charged energy is presented in Table 2, where the total charging demand
for j charging events at the location X for S1, S3 and S5 is defined as EX = ∑j δεj and for S2
and S4 as EX = ∑j δεj/dp.

Table 2. Maximum number of charging events and respective energy demand per day during the
simulation time span. Results are segregated by home and workplace charging for each scenario
under consideration.

S1 S2 S3 S4 S5

NH 2793 12,686 2793 12,686 12,686
NW 867 3089 867 3089 3089

EH (MWh) 68.4 81.2 68.4 81.2 350.5
EW (MWh) 21.2 26.1 21.2 26.1 83.4

Having identified the EV demand and number of charging events for each scenario,
we will now focus our attention on the simulation of the charging events.

2.2.3. Simulation of Charging Events

In this paper, we are interested in the power grid impact of normal AC charging.
Recently released EV models are converging towards supporting three-phase 11 kW AC
charging, in line with the most common configuration of normal charging stations in
Denmark. We frame our analysis assuming a large EV fleet capable of fully utilizing this
type of infrastructure. Hence, throughout this paper we consider the charging power to be
11 kW, regardless of the scenario under analysis and the EV’s SoC. Therefore, the charging
duration is determined by dividing the required energy by the constant charging power.

Given the daily variation of demand on the PDN, we consider different scenarios
for charging control according to a broadcasting control signal or a common objective.
For home charging, we consider two sub-scenarios, namely a and b. In sub-scenario
a, the control signal delays the start of charging until midnight, i.e., 24:00 (00:00 of the
next day), whereas sub-scenario b delays charging until 18:00. Scenario a was devised
to illustrate the impact of charging synchronization due to a simultaneous response to
price variations, such as to distribution network tariffs where the low price period starts at
midnight [25]. Conversely, scenario b was chosen to illustrate the impact of EV charging
during the peak loading period. Although such a scenario is rather unlikely, it could
occur when controlling charging to provide ancillary services to the transmission system or
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through malicious manipulation of charging as a result of cyberattacks. During working
hours, we consider only one synchronization control signal that takes place at 10:00 and
affects only vehicles charging at the workplace. Therefore, the start of charging at a location
X is defined as ts,X = max(tc,X , ta,X), where tc,X is the synchronization control signal time
(for uncontrolled charging in S1 and S2 we set tc,X = 00:00) and ta,X is the arrival time at
the location. When travel records include multiple visits to home or workplace, we select
the arrival time as follows: for home charging we consider the last arrival, whereas for
workplace we take the first. Vehicles visiting the home location during the day, but not
terminating the day at home, are exempted from the synchronization and start charging
immediately upon arrival.

A set of labels was introduced to distinguish home from workplace charging strategies,
namely Hi and Wi, as the sub-scenarios a and b only apply to home charging. A summary of
the configuration of each scenario can be found in Table 3. Charging events were simulated
over a period of 24 h in 15 min resolution starting at 05:00 on the given day to be able to
both capture early charging at work and late charging at home without compromising
capturing the majority of EV demand throughout one day. Furthermore, it is worth noting
that some records encompass parking durations that are insufficient to fully charge the EV.
While scarce and mostly affecting workplace charging, our simulations force vehicles to
complete charging.

Table 3. Summary of the characteristics of each charging scenario Si, including sub-scenarios a
and b, as well as Hi and Wi. The non-daily (n.d.) charging demand δε is defined as the required
energy according to the steady-state model, whereas the daily demand is δε/dp as introduced in the
definition of Si.

S1 S2 S3a S3b S4a S4b S5a S5b
H1, W1 H2, W2 H3a, W3 H3b, W3 H4a, W4 H4b, W4 H5a, W5 H5b, W5

pattern n.d. daily n.d. n.d. daily daily n.d. n.d.
control none none T.S. T.S. T.S. T.S. T.D.S. T.D.S.

tc,H none none 24:00 18:00 24:00 18:00 24:00 18:00
tc,W none none 10:00 10:00 10:00 10:00 10:00 10:00

2.3. Allocation of Charging Events to the Power Distribution Network

Having modelled the PDN topology as discussed in Section 2.1 with its tripartite
nature, we now have to allocate the charging events to the different transformers. The
PDNs under consideration contain multiple classes of transformers, ranging from public
to private (owned by consumers) and finally reserve. For the purpose of our simulations,
we only allocated charging events to transformers from the public infrastructure. The re-
maining transformers were accounted for in the simulation, but no additional EV load was
added. The distribution of charging events also accounted for the type of housing associ-
ated with home charging, such that private home charging was mapped to single-family
infrastructure (i.e., detached, semi-detached or terraced houses) and shared home charging
was associated with denser housing infrastructure, e.g., apartment blocks. The allocation
procedure was based on an analysis of the topology of Frederiksberg municipality, with the
aim to identify the areas that are primarily dedicated to workplace parking and private
residential housing areas, as illustrated in Figure 4.

This procedure can be summarized in four broad steps, as shown in Figure 5.
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Zones for private home and workplace chargersModelled electrical distribution network topology at Frederiksberg

Figure 4. Visualization of the municipality of Frederiksberg, with gray lines indicating roads and
walking paths, and buildings represented in light blue. The identified residential housing areas with
predominantly single-family houses are highlighted with a yellow shade, and the primary workplace
parking areas are represented in a purple shade.

Step 4: Workplace charging allocationStep 5: 
Cost calculation

Step 2: Private home charging allocation

Step 1: Determination of private & shared home charging events 

Number of workplace 
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Figure 5. Charging event allocation methodology. Dark-gray-shaded rhomboids indicate the input
data, and white-shaded rectangles illustrate the results obtained in each step of the process.

First, we divided home charging events according to the type of charging infrastructure
used, i.e., private or shared. Based on customer type data provided by the DSO, we inferred
that the number of daily private home charging events NH,p during one day in S2, S4
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and S5 equates roughly to 80% of the total number of private houses Hp in Frederiksberg
(detached, semi-detached or terraced), as described in Equation (1).

NS2,4,5
H,p = Hp ∗ 0.8. (1)

for S1 and S3, the number of private home charging events needed to be reduced to account
for the fact that fewer EVs will charge on the given day. To achieve such a task, as shown in
Equation (2), the number of private home charging events was multiplied with the ratio
between the total number of home charging events in S1/S3 and the total number of home
charging events in S2/S4/S5.

NS1,3
H,p = NS2,4,5

H,p ∗ NS1,3
H /NS2,4,5

H . (2)

the number of shared home charging events NH,sh was then calculated as the difference
between total and private home charging events accordingly, namely

NS2,4,5
H,sh = NS2,4,5

H − NS2,4,5
H,p , (3)

NS1,3
H,sh = NS1,3

H − NS1,3
H,p . (4)

In the second step, we considered the allocation of private home charging events. The
respective charging events are distributed to the transformers that supply residential zones
with predominantly single-family houses. This attribution is based on the overlap of single-
family housing zones (including a vicinity buffer) and the location of the transformers,
with the number of events being proportional to the relative size of the respective housing
zone. The third step concerned the allocation of shared home charging. Shared home
charging events were distributed uniformly over the remaining transformers, i.e., those
that do not supply single-family housing zones. The fourth step handled the allocation of
the load from workplace charging. It began with the identification of transformers that
can supply this load, based on the locations of workplace parking lots near company or
institution offices and other intensive labor locations. This part of the procedure relied
on public data collected from OpenStreetMap. Workplace charging events were then
allocated to the nearest transformers using the shortest path between the transformer and
respective location, according to the real road and public walking paths in Frederiksberg.
Finally, it is important to note that the allocation procedure has to be repeated for each
simulation scenario and simulated day, as the number of charging events is dependent on
the configuration of each scenario and sampled records.

A summary of the maximum number of charging events allocated to each of the three
PDNs is depicted in Table 4. In addition, we observed that the amount of charging events
allocated to a single transformer in scenarios S1 and S3 were in the following ranges: 2 to
25 for private home, 11 to 12 for shared home and 18 to 19 for workplace charging events.
In scenarios S2, S4 and S5, the number of events increased considerably, but private homes
continued to exhibit the largest interval and shared and workplace exhibited minimal
variation as in the other scenarios. The respective ranges read: 11 to 108 private home, 51
to 52 shared home and 65 to 66 workplace charging events.

Table 4. Summary of charging events allocation in the FRBi networks. We list the maximum number

of events allocated to a private home n(i)
H,p, a shared home n(i)

H,sh and workplace n(i)
W charging for each

scenario under consideration.

n(1)
H,p n(1)

H,sh n(1)
W n(2)

H,p n(2)
H,sh n(2)

W n(3)
H,p n(3)

H,sh n(3)
W

S1, S3a–S3b 275 1312 480 21 821 313 11 353 74
S2, S4a–S5b 1244 5953 1710 95 3734 1116 54 1606 263



World Electr. Veh. J. 2022, 13, 182 11 of 18

2.4. Power Flow Simulation and Reinforcement Cost Calculation

The power flow simulation is a computationally demanding problem to solve. Since
the PDN needs to be properly dimensioned for the days of highest loading, we made use
of the provided power consumption data for 2020 to select all days in which at least one
transformer experienced its maximum loading. Based on this criterion, we identified a
total number of 67 days of peak load, which fell within the periods January–March and
August–December. Furthermore, as discussed in Section 2.2, we considered only normal
weekdays. By this token, the size of the identified pool was further reduced to 40. By
focusing on this reduced sample, we were able to effectively reduce the computational load
and analyze multiple EV charging scenarios.

To be able to assess the EV impact on the PDNs, both in terms of voltage deviations
and transformer and cable overloading, the provided baseload and estimated EV load
were aggregated for each transformer within the networks. The baseload data for each
transformer is only available in hourly resolution. Hence, we made use of cubic interpo-
lation to infer the load in a 15 min timescale. Moreover, as previously mentioned, the EV
demand was modelled for a period of 24 h starting at 05:00 on the given day of peak load.
Thus, the baseload of the PDNs was chosen accordingly within the same period. While the
baseload varies according to the day, the estimated EV load also exhibits variation for each
day due to the sampling, as discussed in Section 2.2. It is worth noting that the reactive
power of EV charging is neglected within this work. Finally, the Newton–Raphson method
was used for the power flow simulation of each selected day in 15 min resolution.

To assess the reinforcements cost associated with the overloading of transformer and
cables observed in our simulations, we assumed a typical cost of 133 ke/km for cable and
21.64 ke for transformer replacements, as used in Refs. [39,40].

3. Results

Having discussed the methodology of the paper, this section is dedicated to the main
results of our work. Here, we address the findings for both the EV and aggregated demand,
as well as the power flow simulation.

3.1. EV Demand and Aggregated Power Consumption

To begin with, we focus on the estimated EV demand and aggregated power con-
sumption for Frederiksberg. This estimate serves as an input to the power flow simulations.
Figure 6 illustrates the aggregated EV demand over the course of 24 h and associated CF.
The CF was calculated for each type of charging location separately as the ratio between the
simultaneous maximum charging demand of EVs charging at home or work, respectively,
and the sum of their individual maximum charging demand. Therefore, the CF can be
understood as the share of EVs charging at the same time in relation to the total number of
EVs with the opportunity to charge at home or work, respectively.

By comparing home charging scenarios a and b, it can be seen that charging synchro-
nization at midnight led to a significant higher peak load compared to synchronizing at
18:00, as the majority of EVs arrived at home and charged at the same time. For scenario a,
a maximum CF of 94.8% is observed. The CF decreases significantly to 58.7% in scenario
b, with a similar variation in the maximum peak power demand, respectively, 131.7 and
81.6 MW. Furthermore, the time of synchronization also has an impact on the magnitude
of experienced peak load in S4 and S5. While synchronization at midnight led to similar
peak loads in both scenarios, the peak load in S5 was notably higher when considering
synchronization time at 18:00 due to longer charging durations.
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Figure 6. EV demand simulation results. The aggregated EV demand over 24 h is illustrated for
(a) home and (b) workplace charging scenarios. Furthermore, the concomitant coincidence factor is
illustrated for (c) home and (d) workplace charging scenarios. Average, minimum and maximum
values for the 40 demand profiles are illustrated by solid, dashed and dotted lines, respectively.

A summary of the time and scale of the maximum peak load and maximum CF is
provided in Table 5. Comparing the results to the existing literature, the CF in H1 and
H4a is similar to results in [18], which estimates the CF of a fleet of 10,000 EVs to be 9%
for non-daily uncontrolled charging and 83% for daily price-responsive charging starting
at 22:00.

Table 5. Summary of the aggregated EV peak power demand for each charging scenario, decom-
posed according to home and workplace contributions. We list its magnitude Pmax, time tmax and
coincidence factor CFmax.

Pmax (MW) tmax CFmax (%)

H1 11.6 19:15 8.5
H2 16.9 18:30 12.4
H3a 28.6 00:30 21.0
H3b 18.0 19:00 13.1
H4a 116.8 24:00 83.7
H4b 50.4 18:00 36.5
H5a 131.7 00:30 94.8
H5b 81.6 19:30 58.7
W1 5.3 10:00 16.8
W2 9.1 09:00 27.0
W3 7.6 10:15 23.9
W4 26.6 10:00 79.8
W5 28.9 10:15 86.2

The aggregated active power demand for Frederiksberg is illustrated in Figure 7. For
scenarios S1–S3, an increase in peak load of less than 32% was experienced. In contrast,
the peak load increased by roughly 183%, 100%, 215% and 157% in S4a, S4b, S5a and S5b,
respectively. Thus, charging synchronization of a large fleet of EVs at midnight could cause
higher concerns compared to the synchronization at 18:00 where the EV load coincides
with the baseload of the system.
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Figure 7. Aggregated active power demand of all three power distribution networks in Frederiksberg,
illustrated from 05:00 on 6 January 2020 to 04:45 on 7 January 2020. While the black plot indicates the
aggregated baseload, the aggregated demand (comprising both baseload and EV load) is illustrated
by different colors for each charging scenario.

3.2. Power Distribution Network Impact and Reinforcement Costs

The EV impact on the PDNs of Frederiksberg was evaluated with respect to bus
voltages and the loading of transformers and underground cables. The replacement of a
PDN’s components is a time-consuming process, and thus it is important for DSO planners
to look at components that could potentially face congestion in the future to be able to make
timely decisions regarding network reinforcements. To analyze the loading of components,
two thresholds are considered, namely 75% and 100%. A summary of the total number of
transformers and cables loaded above 75% and 100%, as well as the respective cable length
and the estimated reinforcement costs, is shown in Table 6. Voltage violations were not
experienced in any of the simulated scenarios and are thus not further addressed in this
section. Comparing the loading of transformers and cables, it can be seen that transformer
overloading was more prominent. For scenarios S1–S3b, no cable overloads were recorded,
and a maximum of two transformers experienced overload situations. For the extreme
scenarios S4 and S5, a notable number of transformers and cables experienced congestion.
Compared to home charging synchronization at 18:00 (b), synchronization at midnight (a)
exerted a significantly higher impact on the PDNs, both in terms of transformer and cable
overloading, indicated by a significant increase in reinforcement costs.

Table 6. Summary of reinforcement costs required to match the increased load in each scenario
Si. We indicate the number of transformers ntr ≡ n1

tr, n2
tr, n3

tr, cables nc ≡ n1
c , n2

c , n3
c and total cable

length lc ≡ l1
c , l2

c , l3
c (km) per PDN in Frederiksberg that exceed 75% and 100% of the nominal

capacity. The last column contains an estimate for the total costs CT (ke) associated with the
respective reinforcement.

ntr nc lc (km) CT (ke)
Load (%) >75 >100 >75 >100 >75 >100 >75 >100

S1 5, 1, 0 1, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 130 22
S2 12, 7, 0 1, 1, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 411 43
S3a 6, 2, 0 1, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 173 22
S3b 7, 2, 0 1, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 195 22
S4a 120, 69, 32 59, 40, 9 32, 9, 0 16, 3, 0 16.5, 5.3, 0 8, 2.1, 0 7676 3680
S4b 74, 52, 14 34, 21, 4 12, 2, 0 2, 0, 0 5.1, 1.3, 0 0.4, 0, 0 3878 1333
S5a 122, 69, 32 86, 67, 25 34, 13, 0 19, 4, 0 17.6, 7.1, 0 9.2, 3.3, 0 8103 5509
S5b 112, 69, 32 54, 38, 8 21, 9, 0 11, 2, 0 10.1, 5.3, 0 4.9, 1.3, 0 6656 2983
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To showcase the impact of home and workplace charging, we illustrate the loading
of four different transformers in Frederiksberg over the course of 24 h starting at 05:00
on 6 January 2020 in Figure 8. Here, we consider four different examples, starting with
no overloading in any scenario (subplot (a)). Examples of overloading caused by either
home or workplace charging are shown in subplot (c) and (d). Finally, an example of both
workplace and home charging causing overloading is depicted in subplot (b). Thus, even
though the home charging demand is estimated to be significant higher than the workplace
charging demand, synchronized charging at work also contributes to potential congestion.

Figure 8. Transformer loading illustrated for a period of 24 h starting at 05:00 on 6 January 2020.
Four different 10/0.4 kV transformers are presented, illustrating a: (a) no-overload scenario; and
congestion scenarios caused by (b) both work and home charging; (c) solely home charging; and
(d) solely workplace charging. Transformer ratings and the baseload are indicated by red and
black lines. Colored lines in different shapes indicate the aggregated apparent power demand
(baseload + EV demand) in each scenario.

4. Discussion

Results indicate that even if full EV penetration is reached, uncontrolled charging is not
likely to cause any significant challenge to the urban PDNs of Frederiksberg. Furthermore,
even in the case of time-synchronized charging, the grid impact is negligible, assuming a
non-daily charging behavior of EVs. However, high synchronization of charging caused
by smart charging objectives that do not consider PDN constraints could potentially lead
to severe congestion within the PDN when the number of EVs charging on a given day
is high, i.e., assuming daily charging patterns or the synchronization of charging on the
same day. Those worst-case scenarios, represented by S4 and S5 (and respective sub-
scenarios), while rare and unlikely, should be taken into consideration. Charging operators
should be incentivized or mandated to implement algorithms that avoid such scenarios.
Smart charging schemes considering PDN constraints that were not explored within this
paper could be used as dampening mechanisms to curb excessive demand surges, e.g., by
spreading charging over low price periods. Grid-aware smart charging could not only avoid
the occurrence of such extreme scenarios, but also mitigate the small impact experienced in
the other scenarios.

Furthermore, one important aspect to mention is the potential mutually interacting
relationship between electricity prices and large-scale EV charging. Within this work,
any potential implication of EV charging on the spot market is neglected because those
implications are in large part uncertain. For the purpose of the paper, we consider that
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EV users will also be able to exploit any form of price variation in the future. Another
important facet is the fact that full electrification of private passenger transport is still a long
way off, and most PDN equipment will have to be renewed before then, as it reaches the
end of its service life. Nonetheless, the results obtained in this work could provide valuable
insights for planning and prioritizing such reinforcements of the grid in the near future.

Moreover, several factors not taken into account within this work could have a sig-
nificant impact on the results, which can either reduce or aggravate the load on the PDN.
Concerning the former, the scenarios introduced in this paper represent extremes both
in terms of charging patterns and control, as well as in terms of the availability of home
and workplace charging. Therefore, results should be taken as illustrative upper bounds
for the expected impact on the grid. Regarding the charging pattern, each charging sce-
nario assumes the same charging behavior for all EV users. However, in reality, charging
behavior is complex in nature, involves multiple patterns (e.g., daily vs. non-daily), is
subject to different control strategies (e.g., uncontrolled vs. smart-charging) and differ-
ent implementations of controls (i.e., the control will vary between charging operators),
and variable charging power is likely a critical element. On top of this, future market
products offered by charging operators could add another dimension of complexity by
offering potential financial benefits to the customers. Regarding charger installation, we
assume throughout this paper that all EV owners with access to good parking conditions,
either at home or work, will have access to a charger, which could lead to overestimating
the number of users with access to charging at those locations. Furthermore, workplace
and housing associations are prime candidates for the utilization of load sharing solutions
in their charging infrastructure, which should naturally dampen high-demand surges. Last
but not least, constraints in the low voltage PDN may also dampen the impact on the
medium voltage PDN, i.e., bottlenecks might materialize on the low voltage level before
any congestion is experienced on the medium voltage level.

In contrast to the abovementioned factors that will likely dampen demand, we now
delve into four factors that can aggravate demand. First, our simulations are based on
present-day numbers of vehicles and driven distance, which fails to account for the likely
growth in the number of private cars, as expected by the Danish authorities [41]. Second,
given the constraints associated with travel records, we assessed the impact of EV charging
on the grid based only on normal weekdays data, which covers the days when high
synchronization is most likely to occur. Yet, it is important to note that high demand
could also occur during weekends or holidays. Third, the impact of public charging is not
considered in the present study. Even in the least impactful scenario of evenly distributed
utilization of public charging, this will add additional load to the power grid. The fourth
factor concerns the spatial dispersion of charging infrastructure and respective connections
to the PDN. As previously discussed, the likelihood of global synchronization of demand
on the entire grid is rather low. Yet, congestion could also arise from excessive concentration
of charging in areas with a limited number of transformers and reduced cable connections,
leading to hot spots of demand that could locally overload the power grid.

5. Conclusions

This paper probes the impact of full electrification of private vehicle utilization on
the urban medium voltage PDN of Frederiksberg (Denmark), both in terms of transformer
and cable loading, as well as voltage deviations. Making use of a Danish travel survey
data, we estimated the future EV demand for home and workplace charging, that will
have to be served by the PDN. To identify potential congestion in the PDN, we devised
five different charging strategies comprising different charging patterns and degrees of
control. We simulated the impact of each charging scenario on top of the present base
load, selecting 40 weekdays of peak loading within the system. Three of the five charging
scenarios focused on a highly simultaneous start of charging to account for a potential
high level of charging synchronization in the future caused by user-centric smart charging
objectives, such as cost minimization, that do not consider PDN related constraints.
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The results indicate that transformer overloading is the primary concern for the
analyzed PDN, with cable overloading being less prominent and no detected voltage
violations. Moreover, uncontrolled charging does not pose a massive concern for the PDN,
mostly due to a low CF of charging, which does not exceed 13% and 27% at home or
work, respectively. Furthermore, even with high charging synchronization, no severe
impacts are to be expected when EVs are not charged on a daily basis given a low CF of
less than 24% for both types of charging locations. However, rare events involving either
time-synchronization for daily charging patterns or day- and time-synchronization for
non-daily charging patterns could lead to a massive increase in CF of up to 95%. Such
events could lead to severe congestion within the PDN, resulting in overloading risk of
up to 63% of transformers and 11% of cables. Finally, due to a higher coincidence factor
of home charging at midnight, synchronization during the night could potentially pose
a bigger challenge to PDNs compared to the synchronization at peak loading times in
the evening.

Future work involves the modelling of a more realistic mix of charging patterns and
control to account for the diversity of EV user behavior and charging preferences and
the inclusion of public charging to analyze the impact on the PDN. Our future work will
also focus on analyzing the impact on the low voltage PDN, which may be subject to
more significant challenges from electric vehicle synchronization, especially with regard to
home charging.
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